Research: Remembering Data for LLMs

Table of Contents
Short-Term Memory - The Context WINAOWc.ceieiuieiieieiiiieriiieieiiienietesseressssesassesssssssssssossssesassesssss 2
Long Term Memory - Beyond the Context WinAOWcceceeiuieiniiiinieniiesiiiesesiesasssessesessssessssesassesssss 2
Default SETEING .. cuieuiiiiiiiiiiiiiiiiiiiiiriiiittrettittrtettestetttastessetestessssassessesassessessssessessssessesassassessssessessesassassass 2
Adding PersiStent MEMIOIYc.cuuieiiuiiiieiiiiiieiiiiiieiiiiiietiiiiattetietestessesastessessssessessssessessssessesssssssesssssssessesassassass 3
Retrieval-Augmented GENEIatioN (RAG)uuuuu ittt ettt et e ettt ta e e e e et ettt bbaa e e e e et etttaaaa e e e e e e et taasbba e eeeeeeteasbbaaaeeeeeeeesssnns 3
STrUCTUIET LONG-TEIMN STOTAZE .. eeeiiiiiiiiiiee ettt et ettt e e e e et ettt b e e e et e ettaaaa e e e e e e eeetaabba e e e e e eeetbbbbaa e e s e eeeeesbaaaa e s eeeeeeabsnnaaasaeaeaes 3
VLT Co T g =g gl oX=To Lo HTaF gy (o gl 17 1=To g T} oY /R PPN 3
Extended Context Window
SUIMIMIAIY et etttiee ettt ettee e ett e ettt e e etau e eataeeetanneeesaaaessnneessanesssnnsesssnneessnnseessnnsesssnseesssseessssnsesssnseesusnsessssneesssnssesssneesssnssesssnseessnneessnnseeees
Memory in Practice - COMMEICIAl LLIMS...........cuceuiuienininiinieiiiareiiecesrecesiessssssessssesassessssssessssessssesassesssss 4
[0 5=] o N 4
(07T I Y 5
Context Window Limitations and HUMan MemMOTYcuiuiiiiiiiiiiiiiiiiiiiieriiiiienieiitestesstesiessesestessesassessesassassesas 5
IBM Watsonx and Al Agents - Memory & RAG Implementation.............ccccecceveiieieiieiaiiienicresesiecassesassesenss 5
Lo T [T T o PO PPN 5
IBM’s Approach to Short-Term vs. LONG-Term MEMOIYccceuiuiiuiiieiieiiiieiiiiieiieritaetesiesastestessssestessesessessesassassens 6
WatSONX ASSISTANT .eeuiiuiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiitietititteittettatttettetessttettsssesetssssssesssssstssssssesssssssesssssrssssssssssssessnns 6
Retrieval and Knowledge INtegrationcccciuieuiiiieiiiiiieiiiiiiiiiiiieiiiiiietietiietesietatesiesasestessesessessssessessesassassens 6
MOAELS ANA ABENTS...cuiuiiiiiiieiiiiiiiiiiiiiiieiiiietitetietietetestetattessessssastesssssssessessssessessssessessssessessssassessssessessssassassass 7
SUMIMIAIY «.eiieiiiieiieiiiieiiiiietietietaetesttastessesassessessssessessssessessssessessssessessssessesssssssessssssssssssassassssssssssessssassessssassesses 7
Controlling Memory - Making LLMs Remember OF FOrgetcuiuiuieiinieiiininiinieiiieciirecesiecassesasssessssens 8
Short-Term Remembrance - Pinning Information in ConNtextccccieiiiiiieiiiiiieiiiiiieiiiiiiiiricteciiitectesiececcessenses 8
Long-Term RemembrancCe - STOrage.......cciuiiuiiuiuiiuiiiiiieiieiiiietietiiiestesetesieseessssessessssessessssessessssessessssessessesassassese 8
57 0 LoT o K=Y 0 4 T8 o ¢ 0= 1 4= N 8
LONG-TErmM FOrSEIUING...cccuiuiiuiiiiiiiiiiiiiiiiiiiiiiiiietiitiettetetesteteetestessesassessessssessessssessessssassessssassessssassessesassassass 9
Data Privacy Considerations in LLM MEMOTIYc.ceciuieiieieiiiureiiniesreiesiecessssessssesassessssssssssossssesassasssss 9
OPENAL aNd ChatGPT.......cuiuiiiiiiiiiiiiiiiiiiiiiiiieiretiitettettetatestesassestessssessessssessessssessessssassessssassessssassassssassassesas 9
WatsonX and ENTEIPriS@ Al e ieieiiieiiiiiiiiiiiiieiiiiiieiieiiietietieiesteseetassessessssessessssessessssessessssessessssassassesassassass 9
Summary of Best PrivacCy PracCtiCescccuiiuiuiuiiuiiieiiiiiiiiiiiiiiiiiiiiiiiiiiiietiecettetsesetassessesassessesassessesassessessssess 10
(020 T o Lo 177 o) o N 11

SOUICES «anueeeieieeieieiitieenteteeeecerescecesescesesencesesescesssensssssesssssssssssssssssssssssssensssssessssssenssssnsasessncnsssensassnanses 12

Short-Term Memory - The Context Window

As you may know LLMs do not have a “traditional” memory in the way humans do. They rely
on the context window, which serves as the model’s short-term/working memory. The
context window is essentially the text (prompt + conversation history) that the model can
“see” at one time when generating a response. For example, OpenAl’s ChatGPT includes
previous messages from the current chat session in its prompt so it can maintain context
and continuity.

Now, onto the size of the context window. The size determines how much information the
model can hold in its memory. For example, early version GPTs (3.5) had a context window
about 4,000 tokens, whereas modern models (4.0) can support up to 32,000 tokens. Older
contentis dropped (forgotten) from the context window if a conversation exceeds the length
of supported token limit. While higher token limit is great for understanding large contexts
like books and documents, it comes with the tradeoff of performance and speed. As the
context size increases, more tokens need to be processed each time, leading to higher
computational costs and slower responses.

To sum it up, at each turn in a conversation, the application (e.g. GPT’s server) will package
the user’s latest query together along with selection of previous dialogues according to the
context size. If the conversation remains within the token limit, the model can refer to any
earlier detail provided by the user. Nevertheless, if the limit is exceeded, older messages will
be truncated (or summarized) to make space for new input. In other words, an LLM’s short-
term memory is finite and session bound. Once you start a new chat or clear the history, the
model has no innate recollection of prior interactions.

Long Term Memory - Beyond the Context Window

Default Setting

By default, LLMs do not retain information across sessions or once the context is cleared. It
holds in its memory only whatever occurs in a single chat session. In technical terms, in
ordinary conditions, these models perform no “online learning” or weight updates during
usage - the model’s knowledge is static after training. Any new fact you tell to GPT is not truly
learned by the underlying model to affect responses later. On the other hand, this is a key
privacy and safety feature as inputs aren’timmediately put into the model’s global behavior.
Shortly, in default, the model has no built-in long-term memory of user-specific data or past
conversations.

Adding Persistent Memory

There are ways to overcome this limitation at either system of application level.

Retrieval-Augmented Generation (RAG)

The most popular and the approach we are planning to use it RAG where the system stores
information in an external knowledge base (database or vector store) and retrieves relevant
pieces to provide to the LLM. This way the model retrieves needed facts to its context window
whenever appropriate, without having those facts hard coded in its weights.

RAG is often used to give LLMs up-to-date knowledge by pulling from uploaded documents,
but it also doubles as a form of long-term memory for past interactions. An agent can
index conversation transcripts or prior user data into a vector database and later retrieve the
semantically relevant snippets when needed to remind the LLM.

Structured Long-Term Storage

In systems like IBM Watsonx Assistant, conversation state can be saved in session variables
or databases. Sessionvariables act as long-term memory during a user’s interaction and can
persist key information (like username, preferences, account details) across multiple dialog
turns. At the end of a session, such variables may be cleared (depending on configuration),
or they could be written to a database for persistence between sessions (if an application
explicitly does so). This design lets an assistant “remember” things a user said earlier but it’s
the application’s logic storing and re-injecting that data, not the core LLM itself.

Vector Embeddings for Memory

Many advanced Al agents maintain a vector embedding memory (as we are doing in SCORS
Al). Each piece ofinformation is embedded into a high-dimensional vector and stored. When
the agent needs to recall something, it computes the embedding of the current context or
query and finds similar vectors in its vector database. Those relevant items are then added
into the LLM’s context. This semantic search approach allows recall of facts even from
conversations much earlier or beyond the raw token limit, if they were stored.

IBM’s concept of “semantic caching” in Agentic RAG refers to this: caching previous queries,
contexts, and results so the agent can reuse them later as needed. In essence, the agent
builds up its own knowledge base of the interaction history or findings and keeps consulting
it throughout the session (and potentially across sessions, if desired).

Extended Context Window

As noted, another way to achieve longer memory is simply to use models with huge context
windows (like tens or hundreds of thousands of tokens). IBM’s Granite models with 128k-

token windows are an example. Theoretically, you can paste an entire long conversation or
large documents directly into the prompt without needing an external database for memory.

However, even 128k tokens, while very large, is still finite. Extremely long or multi-session
interactions might still need truncation or external memory if they exceed this limit.
Moreover, feeding extremely large prompts can be inefficient. For these reasons, many
implementations combine strategies.

Summary

In summary, long-term memory for LLM-based agents is typically an engineered solution on
top of the base model. The underlying model doesn’t learn new user-supplied facts during
chat (no weight updates occur on the fly). Instead, any cross-session memory or
personalization comes from storing data externally and reloading it into the prompt when
needed. If you want an Al to “remember” something permanently, you either fine-tune the
model on that data or maintain it in a knowledge store that the Al can query.

Memory in Practice - Commercial LLMs

ChatGPT

In the public ChatGPT interface, the model remembers what the user has said earlier in the
conversation by maintaining an ongoing chat history that is sent to the model with each
request. The OpenAl server handles this by keeping a log of the conversation and prepends
the last N messages (within token limits) to your prompt each time.

However, if you exceed those limits, ChatGPT will start to lose the earliest messages. Users
sometimes notice this as the model suddenly “forgetting” a detail from a long
conversation. It’s usually because that detail was from too far back and the system
dropped it to stay within token capacity. Some applications implement conversation
summarization to mitigate this: when the chat gets too long, they summarize older parts
and include the summary going forward instead of raw transcripts. For example, open-
source frameworks like LangChain provide a ConversationSummaryMemory module that
does exactly this.

It’s important to note that ChatGPT does not carry over memory between separate chats. If
you click “New chat” or the session times out, the next conversation starts fresh. The only
way ChatGPT’s underlying model “learns” new information is when OpenAl retrains or fine-
tunes it on new data, but this training happens offline, not during your live interaction.

Other LLMs

Other commercial LLM chatbots, such as Google Bard, Microsoft’s Bing Chat powered by
GPT-4, have similar behaviors. They maintain context within a conversation thread but
typically do not carry memory across distinct sessions or browser windows. Bing Chat, for
instance, has a limit on the number of turns. Anthropic’s Claude, known for a very large
context, can intake something like 100k tokens of context which allows it to effectively
“remember” an entire novel or a day-long chat in one go. Nevertheless, even Claude will
not remember anything once a new conversation is started or if that 100k window is
exceeded.

Context Window Limitations and Human Memory

The reliance on context windows means LLMs can sometimes act like they have amnesia if
the conversation is long or if you switch context. They have no innate understanding that “I
mentioned X yesterday, so | should recall that today” unless yesterday’s information is
provided again. This is a fundamental difference from human memory. Researchers are
actively exploring architectural changes (like longer-context support or new memory
mechanisms) to give LLMs more persistent memory, but current mainstream models treat

each session independently by design.

One workaround now available in ChatGPT is the “Custom Instructions” feature (for
ChatGPT Plus users). This lets you save some background information about yourself or
your preferences that will be prepended to every new chat by the system. For instance, you
could tell ChatGPT “l am a software engineer specializing in X and my preferred tone is
formal” and save that as a custom instruction. Then, every conversation (until you change
it) the system will include that in the prompt so the model acts as if it remembers those
details about you.

IBM Watsonx and Al Agents - Memory & RAG
Implementation

Introduction

IBM’s Watsonx platform is designed with enterprise Al needs in mind, and this includes
robust handling of memory and context in a controlled, privacy-preserving way. In Watsonx,
you can build Al agents that incorporate both short-term and long-term memory to carry
out complex tasks over multiple steps or sessions. IBM’s literature often uses the term
“Agentic RAG” when referring to combining Retrieval-Augmented Generation with agent-

like behaviors. Al agent in Watsonx can remember what it has already looked up or
answered and avoid repeating work or contradicting itself as it moves through a workflow.

IBM’s Approach to Short-Term vs. Long-Term Memory

IBM aligns with the general idea that short-term memory is the immediate context, whereas
long-term memory is information preserved across sessions or for future reuse. In an IBM
Redbook on watsonx.ai, they describe short-term memory as focusing on “the agent’s
immediate actions, thoughts, and observations during ongoing interactions”, including
data retrieved from tools or APIs in the moment. Long-term memory, by contrast, is a store
of information accumulated over time: “summarized logs of prior interactions, user
preferences, and other contextual info that influence the agent’s behavior”. For example, a
Watsonx Al agent could retain a summary of what a user asked last week and the solution it
provided, so if the user comes back later, the agent can say “as | advised you last
week...” - giving a personalized, continuous experience.

Watsonx Assistant

The Watsonx Assistant provides a concrete mechanism for this. It has session variables
(long-term memory within a session) and even the option to store conversation logs for a
period. So, that the returning users can have continuity. A developer can choose to persist
certain variables to a database keyed by user ID, effectively giving a memory across
sessions (e.g., remembering a returning customer’s preferences). IBM also allows masking
of sensitive data in these variables for privacy — marking them as private so they don’t
appear in logs or are obfuscated with asterisks.

Retrieval and Knowledge Integration

In Watsonx’s ecosystem, RAG is a central pattern for giving LLMs knowledge without
training. The Watsonx documentation describes a typical RAG pipeline: a vector database
holds your domain data, an embedding model fetches relevant chunks based on the query,
and the LLM (like an IBM Foundation Model or an open-source model you deploy on
Watsonx) then receives the query + retrieved data to generate an answer.

This means any enterprise data you want the model to use can be provided at query time
rather than taught to the model weights. For memory purposes, you could also store
embeddings of conversation history or past QA pairs in a vector store and have the agent
retrieve those when relevant. This is essentially how “semantic caching” of past queries
works. The Agentic RAG approach IBM touts go a step further by having autonomous
agents that can decide when to query the knowledge base, when to use a tool, or when to

http://watsonx.ai/

recall prior results. The agent’s planning logic, aided by memory, helps it handle more
complex workflows than a static single-turn RAG system.

Models and Agents

IBM Watsonx’s Granite models themselves have been optimized for long contexts as
mentioned. The fact that IBM has open-sourced 3B and 8B parameter models with 128k
token windows indicates they see value in models being able to directly ingest large
amounts of context (which can simplify memory handling for certain tasks). However, IBM
also emphasizes efficiency: large context windows are great but can be wasteful if you stuff
them with irrelevant text.

Thus, techniques like agentic chunking and intelligent retrieval are recommended. For
example, break documents into chunks, embed them with metadata, and fetch only the
most relevant pieces for the context. This way, the LLM isn’t bogged down by extraneous
details and latency stays low even as knowledge scales.

IBM’s “What Is Al Agent Memory?” article explicitly states that advanced Al agents
incorporate modules for memory and categorizes types such as episodic memory
(remembering specific events or sessions) and semantic memory (stored facts, akinto a
knowledge base). Implementing these in Watsonx often involves using Watsonx.data (a
data lake-house) or other databases to store logs, and Watsonx.ai’s tooling to fetch those
logs when needed. IBM provides governance tools as well (Watsonx.governance) that can
log all inputs/outputs for audit (optional). By default, IBM does not log your prompts unless
you set up governance, protecting privacy.

Summary

In summary, IBM Watsonx gives developers the building blocks to create both short-term
conversational memory and long-term knowledge retention but leaves it in your control.
You might use context windows and prompt engineering for short-term state, and
Watsonx’s data stores or external databases for long-term memory (e.g., user profiles,
conversation history, documents). The key difference is that in Watsonx (especially the
enterprise context), all this data remains under your ownership and control, not used to
improve IBM’s models behind the scenes. This is critical for privacy.

http://watsonx.ai/

Controlling Memory - Making LLMs Remember or Forget

Short-Term Remembrance - Pinning Information in Context

To have the model remember a fact during a session, ensure that fact stays within the
context window for each prompt. You can achieve this by repeating the fact as needed or
using a system-level instruction. This uses up some token budget, but guarantees the
model sees it at each turn. In custom implementations, developers sometimes maintain a
“rolling buffer” of recent messages (short-term memory) and a persistent prefix of key
facts (like username or other constants) that is always prepended. This way, those key facts
never fall out of scope.

Long-Term Remembrance - Storage

If you want the Al to remember something beyond the current session or beyond the
context size, you need to save it somewhere and re-inject it later. This could be as simple
as writing to a file or database after a chat session such as “store important details: user’s
accountinfo, unresolved queries”. Next time, retrieve and feed them to the model.

In a more sophisticated way, you can store embeddings of the conversation and use
similarity search to pull up relevant past points when the user returns. In frameworks like
LangChain (IBM Watsonx supports for agent development), you have ConversationMemory
components, such as ConversationBufferMemory, ConversationSummaryMemory,
VectorStoreRetrieverMemory, etc., that handle this automatically. They abstract the
process of saving past interactions and loading them into prompts when needed.

Short-Term Forgetting

If during a conversation the user says “Please forget what | just told you” — can the model
comply? The model cannot erase a piece of text from the prompt it already saw (it has no
selective amnesia feature on the model side). However, the application could choose to
remove or mask that portion from the conversation history going forward. For instance, if a
user mistakenly reveals a password and says forget it, a diligent system could omit that
turn from all future prompt assemblies. Some researchers have tried prompt tricks like
telling the model “Do not use the information from message X going forward,” but the
model might or might not obey that reliably (and it still has that info in the prompt unless
you strip it out). So, the safe way to forget is eliminate the data from the context. This is
straightforward in a custom app; in ChatGPT’s interface, the equivalent would be to delete
the entire chat or turn off history. OpenAl’s interface does allow users to delete past
conversations and even individual messages now (in ChatGPT Enterprise/Business), which
ensures those will not be used in context or for training.

Long-Term Forgetting

By default, forgetting is the norm — new session, no memory. But if you have implemented a
long-term memory store, you need a strategy to purge or archive data when it’s no longer
needed. This is important for privacy compliance. IBM Watsonx provides controls for this:
you can configure how long to retain chat history in Watsonx Orchestrate, with a default of
30 days and options up to 365 days. After the retention period, older messages are
automatically deleted and become inaccessible, effectively forcing the Al to forget those
conversations. If a user account is removed, Watsonx will delete all associated chat history
immediately. Similarly, if you’re using a vector database for memory, you might implement
a policy to delete vectors older than N days or when a user requests deletion. The bottom
line: to make an Al forget, remove the data from any prompts and any persistent
storage that the Al or its retrieval components might draw upon.

Data Privacy Considerations in LLM Memory

When discussing how LLMs handle user-provided data, privacy, and data security are
paramount. Especially, in enterprise settings like we have in Selco.

OpenAl and ChatGPT

e Free ChatGPT/Plus with history on: Conversations are stored indefinitely (for your
account’s history) and may be used for model training/improvement.

e ChatGPT with history off: Conversations not used for training and deleted from
OpenAl systems after ~30 days.

e ChatGPT Enterprise/Business or APl usage: Data not used for training at all. API
data may be retained briefly for abuse monitoring but then deleted. Enterprise
allows org-level control and auditing of conversations (admins can see logs) but
those logs are isolated to your org.

e User ownership: OpenAl’s terms say you own the content you input and output
(they don’t claim IP on your prompts or the answers), but you should still avoid
inputting anything confidential unless you trust the service’s privacy measures.

Watsonx and Enterprise Al

IBM’s approach is to put privacy first by design. According to IBM’s documentation and
experts, “IBM does not use the content that you upload to watsonx or the output generated
by a foundation model to train or improve any IBM-developed model.” All your prompts,
data, and outputs remain your own. In fact, IBM states it cannot even access your
prompts or model outputs unless you explicitly save them or choose to share them.

When you use Watsonx.ai, all your assets (prompts, fine-tuned models, notebooks, etc.)
are stored in a dedicated cloud storage bucket that is single-tenant and encrypted. IBM
provides the service and infrastructure, but your data is isolated within your account’s
resources.

Notably, IBM’s policies indicate that they do not log prompt submissions or store
unsaved prompts beyond your session. If you run a prompt in the playground and don’t
save it, it’s not kept. They do track usage metrics (for billing, performance) but this does not
include the content of your prompts. No prompt or output is ever used to retrain IBM’s
foundation models without your permission. In other words, you won’t suddenly find your
proprietary sentence appearing in some future IBM model’s knowledge.

For Watsonx Assistant (Conversational Al) specifically, IBM gives you tools to comply
with privacy needs: you can mask variables (so sensitive info like names or IDs appear as
***** in any logs), you can control data retention as mentioned, and you can completely
disable storing conversation logs if required. If you integrate Watsonx Assistant on your
website, you might choose to keep transcripts for analytics or purge them immediately - it’s
up to you as the owner. IBM isn’t snooping on those chats behind the scenes.

This difference in philosophy is crucial for enterprise adoption. Many companies are
uneasy using ChatGPT directly with internal data because of the possibility (however small)
that the data could leak or be seen by Al trainers. IBM’s Watsonx is marketed as a solution
to that: an Al platform “built for business” where you have full control, privacy, and data
isolation. Indeed, an IBM blog emphasizes: “Your data stays private — from input to
inference to storage. IBM respects data boundaries and does not reuse any of your Al
content.”.

Summary of Best Privacy Practices

e Use platforms or services that clearly do not use your data for anything beyond
serving you. IBM Watsonx.ai is one, Azure OpenAl is another (Azure explicitly states
your data is only yours and not used to improve the base model).

e Implement data retention policies: don’t keep conversation logs longer than
needed. IBM’s default of 30 days can be a good practice, or even shorter for highly
sensitive chats.

e Mask or encrypt sensitive fields. For instance, if a user provides a social security
number that you need to remember within the conversation, store it in a secure
variable and mask itin any logs or outputs.

e Provide a mechanism for users to request deletion of their data (and honor it by
wiping their memory records from your storage).

http://watsonx.ai/
http://watsonx.ai/

¢ Avoid fine-tuning the model with raw user chat logs unless necessary — and if you
do, scrub them first. Often, a RAG approach can achieve the needed specialization
without risking hard-coding private info into the model.

e Keep the human in the loop for oversight when an Al is using memory to make sure
it’s not inadvertently exposing something it shouldn’t. For example, when retrieving
past info, ensure the info truly belongs to that user and is appropriate to include.

Conclusion

LLMs “remember” user-provided information primarily through context windows and
clever system design, rather than by internal weight updates. In a single conversation,
models like ChatGPT can appear to recall everything you’ve said — but under the hood, it’s
because that conversation text is being fed back into the model each time (until it hits a
limit). There is no magical long-term memory inside the vanilla model: if you wipe the
context, the model forgets instantly.

To extend memory, developers use external storage and retrieval (long-term memory via
databases, vector stores, etc.) or rely on ever-larger context windows. IBM’s Watsonx
platform exemplifies the state-of-the-art in this regard, giving tools for short-term memory
(session context, rolling buffers) and long-term memory (knowledge bases, semantic
caching) within a controllable, secure framework. Techniques like Agentic RAG enable Al
agents to accumulate knowledge over multiple interactions while still grounding
themselves in up-to-date information.

Crucially, the question of how long an Al remembers is not measured in clock time butin
tokens and design choices. ChatGPT could “remember” a conversation from a year ago if
that conversation is provided again in the prompt today. Conversely, it could forget what
you said 2 minutes ago if the context window overflowed or the session was reset. IBM
Watsonx allows configurable retention — for example, automatically purging chat records
after 30 days for compliance - ensuring that any long-term memory is explicitly managed
and not indefinite.

For a consulting firm building Al solutions like Selco, these insights mean you should
carefully architect your Al’s memory:

e Decide what the Al truly needs to remember to serve the user and for how long.

e Useretrieval mechanisms to supply that memory on demand rather than enlarging
the base model (which keeps the model general and reduces risk of leakage).

e Implement controls for forgetting, both for user requests and for routine cleanup.

And choose partners or platforms (like Watsonx or a self-hosted model) that align
with your privacy requirements, so you can confidently tell your clients that their
data won’t be siphoned away or used without consent.

In essence, current LLMs are powerful text predictors with no innate long-term memory -

but with thoughtful system design, we can impart them a memory: one that we program

and govern. This gives us the best of both worlds: Al that remembers what we want it to, for

as long as we want, and forgets the rest. By leveraging techniques like context

management, RAG, and IBM’s agent frameworks, and by upholding strict privacy practices,

we can build Al solutions that are both intelligent and trustworthy with user data.

Sources

Belcic, lvan, et al. What Is Agentic RAG? IBM Think Blog, 2023,
https://www.ibm.com/think/articles/what-is-agentic-rag.

Bhushan, Anand. “ChatGPT, Data Privacy & You: What Every Enterprise Employee
Should Know.” Medium, 2025, https://medium.com/@anandbhushan/chatgpt-data-
privacy-you.

GuardianOwl Digital. “ChatGPT vs IBM Watson: Which Is Your Data Safer With?”
GuardianOwl Digital Marketing, 2024, https://guardianowldigital.com/chatgpt-vs-
ibm-watson-data-privacy.

IBM Cloud Docs. “Using Variables to Manage Conversation Information.” IBM
Watson Assistant Documentation, 2024, https://cloud.ibm.com/docs/watson-

assistant?topic=watson-assistant-variables.

IBM Documentation. “Configuring Data Retention Time for Al Chat.” Watsonx
Orchestrate, 2024, https://www.ibm.com/docs/en/orchestrate?topic=configure-

data-retention-time.

IBM Research. “What’s an LLM Context Window and Why Is It Getting Larger?” IBM
Research Blog, 2024, https://research.ibm.com/blog/llm-context-window.

IBM Think Blog. “What Is Al Agent Memory?” IBM, 2023,
https://www.ibm.com/think/articles/ai-agent-memory.

Riemer, Kai, et al. “Al Doesn’t Really ‘Learn’—Understanding the Limits of ChatGPT.”
Medium, 2025, https://medium.com/@kai_riemer/ai-doesnt-really-learn.

Yenduri, Jyotsna G. “Day 20 — Securing Foundation Models in IBM Watsonx.”
Medium, 2025, https://medium.com/@jyotsna_yenduri/day-20-securing-

foundation-models-in-ibm-watsonx.

https://www.ibm.com/think/articles/what-is-agentic-rag
https://medium.com/@anandbhushan/chatgpt-data-privacy-you
https://medium.com/@anandbhushan/chatgpt-data-privacy-you
https://guardianowldigital.com/chatgpt-vs-ibm-watson-data-privacy
https://guardianowldigital.com/chatgpt-vs-ibm-watson-data-privacy
https://cloud.ibm.com/docs/watson-assistant?topic=watson-assistant-variables
https://cloud.ibm.com/docs/watson-assistant?topic=watson-assistant-variables
https://www.ibm.com/docs/en/orchestrate?topic=configure-data-retention-time
https://www.ibm.com/docs/en/orchestrate?topic=configure-data-retention-time
https://research.ibm.com/blog/llm-context-window
https://www.ibm.com/think/articles/ai-agent-memory
https://medium.com/@kai_riemer/ai-doesnt-really-learn
https://medium.com/@jyotsna_yenduri/day-20-securing-foundation-models-in-ibm-watsonx
https://medium.com/@jyotsna_yenduri/day-20-securing-foundation-models-in-ibm-watsonx

