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Short-Term Memory - The Context Window 
As you may know LLMs do not have a “traditional” memory in the way humans do. They rely 
on the context window, which serves as the model’s short-term/working memory. The 
context window is essentially the text (prompt + conversation history) that the model can 
“see” at one time when generating a response. For example, OpenAI’s ChatGPT includes 
previous messages from the current chat session in its prompt so it can maintain context 
and continuity. 

Now, onto the size of the context window. The size determines how much information the 
model can hold in its memory. For example, early version GPTs (3.5) had a context window 
about 4,000 tokens, whereas modern models (4.0) can support up to 32,000 tokens. Older 
content is dropped (forgotten) from the context window if a conversation exceeds the length 
of supported token limit. While higher token limit is great for understanding large contexts 
like books and documents, it comes with the tradeoU of performance and speed. As the 
context size increases, more tokens need to be processed each time, leading to higher 
computational costs and slower responses. 

To sum it up, at each turn in a conversation, the application (e.g. GPT’s server) will package 
the user’s latest query together along with selection of previous dialogues according to the 
context size. If the conversation remains within the token limit, the model can refer to any 
earlier detail provided by the user. Nevertheless, if the limit is exceeded, older messages will 
be truncated (or summarized) to make space for new input.  In other words, an LLM’s short-
term memory is finite and session bound. Once you start a new chat or clear the history, the 
model has no innate recollection of prior interactions. 

Long Term Memory - Beyond the Context Window 

Default Setting 
By default, LLMs do not retain information across sessions or once the context is cleared. It 
holds in its memory only whatever occurs in a single chat session. In technical terms, in 
ordinary conditions, these models perform no “online learning” or weight updates during 
usage - the model’s knowledge is static after training. Any new fact you tell to GPT is not truly 
learned by the underlying model to aUect responses later. On the other hand, this is a key 
privacy and safety feature as inputs aren’t immediately put into the model’s global behavior. 
Shortly, in default, the model has no built-in long-term memory of user-specific data or past 
conversations. 



Adding Persistent Memory 
There are ways to overcome this limitation at either system of application level. 

Retrieval-Augmented Generation (RAG) 
The most popular and the approach we are planning to use it RAG where the system stores 
information in an external knowledge base (database or vector store) and retrieves relevant 
pieces to provide to the LLM. This way the model retrieves needed facts to its context window 
whenever appropriate, without having those facts hard coded in its weights. 

RAG is often used to give LLMs up-to-date knowledge by pulling from uploaded documents, 
but it also doubles as a form of long-term memory for past interactions. An agent can 
index conversation transcripts or prior user data into a vector database and later retrieve the 
semantically relevant snippets when needed to remind the LLM. 

Structured Long-Term Storage 
In systems like IBM Watsonx Assistant, conversation state can be saved in session variables 
or databases. Session variables act as long-term memory during a user’s interaction and can 
persist key information (like username, preferences, account details) across multiple dialog 
turns. At the end of a session, such variables may be cleared (depending on configuration), 
or they could be written to a database for persistence between sessions (if an application 
explicitly does so). This design lets an assistant “remember” things a user said earlier but it’s 
the application’s logic storing and re-injecting that data, not the core LLM itself. 

Vector Embeddings for Memory 
Many advanced AI agents maintain a vector embedding memory (as we are doing in SCORS 
AI). Each piece of information is embedded into a high-dimensional vector and stored. When 
the agent needs to recall something, it computes the embedding of the current context or 
query and finds similar vectors in its vector database. Those relevant items are then added 
into the LLM’s context. This semantic search approach allows recall of facts even from 
conversations much earlier or beyond the raw token limit, if they were stored. 

IBM’s concept of “semantic caching” in Agentic RAG refers to this: caching previous queries, 
contexts, and results so the agent can reuse them later as needed. In essence, the agent 
builds up its own knowledge base of the interaction history or findings and keeps consulting 
it throughout the session (and potentially across sessions, if desired). 

Extended Context Window 
As noted, another way to achieve longer memory is simply to use models with huge context 
windows (like tens or hundreds of thousands of tokens). IBM’s Granite models with 128k-



token windows are an example. Theoretically, you can paste an entire long conversation or 
large documents directly into the prompt without needing an external database for memory. 

However, even 128k tokens, while very large, is still finite. Extremely long or multi-session 
interactions might still need truncation or external memory if they exceed this limit. 
Moreover, feeding extremely large prompts can be ineUicient. For these reasons, many 
implementations combine strategies. 

Summary 
In summary, long-term memory for LLM-based agents is typically an engineered solution on 
top of the base model. The underlying model doesn’t learn new user-supplied facts during 
chat (no weight updates occur on the fly). Instead, any cross-session memory or 
personalization comes from storing data externally and reloading it into the prompt when 
needed. If you want an AI to “remember” something permanently, you either fine-tune the 
model on that data or maintain it in a knowledge store that the AI can query. 

Memory in Practice - Commercial LLMs 

ChatGPT 
In the public ChatGPT interface, the model remembers what the user has said earlier in the 
conversation by maintaining an ongoing chat history that is sent to the model with each 
request. The OpenAI server handles this by keeping a log of the conversation and prepends 
the last N messages (within token limits) to your prompt each time. 

However, if you exceed those limits, ChatGPT will start to lose the earliest messages. Users 
sometimes notice this as the model suddenly “forgetting” a detail from a long 
conversation. It’s usually because that detail was from too far back and the system 
dropped it to stay within token capacity. Some applications implement conversation 
summarization to mitigate this: when the chat gets too long, they summarize older parts 
and include the summary going forward instead of raw transcripts. For example, open-
source frameworks like LangChain provide a ConversationSummaryMemory module that 
does exactly this. 

It’s important to note that ChatGPT does not carry over memory between separate chats. If 
you click “New chat” or the session times out, the next conversation starts fresh. The only 
way ChatGPT’s underlying model “learns” new information is when OpenAI retrains or fine-
tunes it on new data, but this training happens oUline, not during your live interaction. 



Other LLMs 
Other commercial LLM chatbots, such as Google Bard, Microsoft’s Bing Chat powered by 
GPT-4, have similar behaviors. They maintain context within a conversation thread but 
typically do not carry memory across distinct sessions or browser windows. Bing Chat, for 
instance, has a limit on the number of turns. Anthropic’s Claude, known for a very large 
context, can intake something like 100k tokens of context which allows it to eUectively 
“remember” an entire novel or a day-long chat in one go. Nevertheless, even Claude will 
not remember anything once a new conversation is started or if that 100k window is 
exceeded. 

Context Window Limitations and Human Memory 
The reliance on context windows means LLMs can sometimes act like they have amnesia if 
the conversation is long or if you switch context. They have no innate understanding that “I 
mentioned X yesterday, so I should recall that today” unless yesterday’s information is 
provided again. This is a fundamental diUerence from human memory. Researchers are 
actively exploring architectural changes (like longer-context support or new memory 
mechanisms) to give LLMs more persistent memory, but current mainstream models treat 
each session independently by design. 

One workaround now available in ChatGPT is the “Custom Instructions” feature (for 
ChatGPT Plus users). This lets you save some background information about yourself or 
your preferences that will be prepended to every new chat by the system. For instance, you 
could tell ChatGPT “I am a software engineer specializing in X and my preferred tone is 
formal” and save that as a custom instruction. Then, every conversation (until you change 
it) the system will include that in the prompt so the model acts as if it remembers those 
details about you. 

IBM Watsonx and AI Agents - Memory & RAG 
Implementation 

Introduction 
IBM’s Watsonx platform is designed with enterprise AI needs in mind, and this includes 
robust handling of memory and context in a controlled, privacy-preserving way. In Watsonx, 
you can build AI agents that incorporate both short-term and long-term memory to carry 
out complex tasks over multiple steps or sessions. IBM’s literature often uses the term 
“Agentic RAG” when referring to combining Retrieval-Augmented Generation with agent-



like behaviors. AI agent in Watsonx can remember what it has already looked up or 
answered and avoid repeating work or contradicting itself as it moves through a workflow. 

IBM’s Approach to Short-Term vs. Long-Term Memory 
IBM aligns with the general idea that short-term memory is the immediate context, whereas 
long-term memory is information preserved across sessions or for future reuse. In an IBM 
Redbook on watsonx.ai, they describe short-term memory as focusing on “the agent’s 
immediate actions, thoughts, and observations during ongoing interactions”, including 
data retrieved from tools or APIs in the moment. Long-term memory, by contrast, is a store 
of information accumulated over time: “summarized logs of prior interactions, user 
preferences, and other contextual info that influence the agent’s behavior”. For example, a 
Watsonx AI agent could retain a summary of what a user asked last week and the solution it 
provided, so if the user comes back later, the agent can say “as I advised you last 
week…” – giving a personalized, continuous experience. 

Watsonx Assistant 
The Watsonx Assistant provides a concrete mechanism for this. It has session variables 
(long-term memory within a session) and even the option to store conversation logs for a 
period. So, that the returning users can have continuity. A developer can choose to persist 
certain variables to a database keyed by user ID, eUectively giving a memory across 
sessions (e.g., remembering a returning customer’s preferences). IBM also allows masking 
of sensitive data in these variables for privacy – marking them as private so they don’t 
appear in logs or are obfuscated with asterisks. 

Retrieval and Knowledge Integration 
In Watsonx’s ecosystem, RAG is a central pattern for giving LLMs knowledge without 
training. The Watsonx documentation describes a typical RAG pipeline: a vector database 
holds your domain data, an embedding model fetches relevant chunks based on the query, 
and the LLM (like an IBM Foundation Model or an open-source model you deploy on 
Watsonx) then receives the query + retrieved data to generate an answer. 

This means any enterprise data you want the model to use can be provided at query time 
rather than taught to the model weights. For memory purposes, you could also store 
embeddings of conversation history or past QA pairs in a vector store and have the agent 
retrieve those when relevant. This is essentially how “semantic caching” of past queries 
works. The Agentic RAG approach IBM touts go a step further by having autonomous 
agents that can decide when to query the knowledge base, when to use a tool, or when to 

http://watsonx.ai/


recall prior results. The agent’s planning logic, aided by memory, helps it handle more 
complex workflows than a static single-turn RAG system. 

Models and Agents 
IBM Watsonx’s Granite models themselves have been optimized for long contexts as 
mentioned. The fact that IBM has open-sourced 3B and 8B parameter models with 128k 
token windows indicates they see value in models being able to directly ingest large 
amounts of context (which can simplify memory handling for certain tasks). However, IBM 
also emphasizes eUiciency: large context windows are great but can be wasteful if you stuU 
them with irrelevant text. 

Thus, techniques like agentic chunking and intelligent retrieval are recommended. For 
example, break documents into chunks, embed them with metadata, and fetch only the 
most relevant pieces for the context. This way, the LLM isn’t bogged down by extraneous 
details and latency stays low even as knowledge scales. 

IBM’s “What Is AI Agent Memory?” article explicitly states that advanced AI agents 
incorporate modules for memory and categorizes types such as episodic memory 
(remembering specific events or sessions) and semantic memory (stored facts, akin to a 
knowledge base). Implementing these in Watsonx often involves using Watsonx.data (a 
data lake-house) or other databases to store logs, and Watsonx.ai’s tooling to fetch those 
logs when needed. IBM provides governance tools as well (Watsonx.governance) that can 
log all inputs/outputs for audit (optional). By default, IBM does not log your prompts unless 
you set up governance, protecting privacy. 

Summary 
In summary, IBM Watsonx gives developers the building blocks to create both short-term 
conversational memory and long-term knowledge retention but leaves it in your control. 
You might use context windows and prompt engineering for short-term state, and 
Watsonx’s data stores or external databases for long-term memory (e.g., user profiles, 
conversation history, documents). The key diUerence is that in Watsonx (especially the 
enterprise context), all this data remains under your ownership and control, not used to 
improve IBM’s models behind the scenes. This is critical for privacy. 

http://watsonx.ai/


Controlling Memory - Making LLMs Remember or Forget 

Short-Term Remembrance - Pinning Information in Context 
To have the model remember a fact during a session, ensure that fact stays within the 
context window for each prompt. You can achieve this by repeating the fact as needed or 
using a system-level instruction. This uses up some token budget, but guarantees the 
model sees it at each turn. In custom implementations, developers sometimes maintain a 
“rolling buGer” of recent messages (short-term memory) and a persistent prefix of key 
facts (like username or other constants) that is always prepended. This way, those key facts 
never fall out of scope. 

Long-Term Remembrance - Storage 
If you want the AI to remember something beyond the current session or beyond the 
context size, you need to save it somewhere and re-inject it later. This could be as simple 
as writing to a file or database after a chat session such as “store important details: user’s 
account info, unresolved queries”. Next time, retrieve and feed them to the model. 

In a more sophisticated way, you can store embeddings of the conversation and use 
similarity search to pull up relevant past points when the user returns. In frameworks like 
LangChain (IBM Watsonx supports for agent development), you have ConversationMemory 
components, such as ConversationBuUerMemory, ConversationSummaryMemory, 
VectorStoreRetrieverMemory, etc., that handle this automatically. They abstract the 
process of saving past interactions and loading them into prompts when needed. 

Short-Term Forgetting 
If during a conversation the user says “Please forget what I just told you” – can the model 
comply? The model cannot erase a piece of text from the prompt it already saw (it has no 
selective amnesia feature on the model side). However, the application could choose to 
remove or mask that portion from the conversation history going forward. For instance, if a 
user mistakenly reveals a password and says forget it, a diligent system could omit that 
turn from all future prompt assemblies. Some researchers have tried prompt tricks like 
telling the model “Do not use the information from message X going forward,” but the 
model might or might not obey that reliably (and it still has that info in the prompt unless 
you strip it out). So, the safe way to forget is eliminate the data from the context. This is 
straightforward in a custom app; in ChatGPT’s interface, the equivalent would be to delete 
the entire chat or turn oU history. OpenAI’s interface does allow users to delete past 
conversations and even individual messages now (in ChatGPT Enterprise/Business), which 
ensures those will not be used in context or for training. 



Long-Term Forgetting 
By default, forgetting is the norm – new session, no memory. But if you have implemented a 
long-term memory store, you need a strategy to purge or archive data when it’s no longer 
needed. This is important for privacy compliance. IBM Watsonx provides controls for this: 
you can configure how long to retain chat history in Watsonx Orchestrate, with a default of 
30 days and options up to 365 days. After the retention period, older messages are 
automatically deleted and become inaccessible, eUectively forcing the AI to forget those 
conversations. If a user account is removed, Watsonx will delete all associated chat history 
immediately. Similarly, if you’re using a vector database for memory, you might implement 
a policy to delete vectors older than N days or when a user requests deletion. The bottom 
line: to make an AI forget, remove the data from any prompts and any persistent 
storage that the AI or its retrieval components might draw upon. 

Data Privacy Considerations in LLM Memory 
When discussing how LLMs handle user-provided data, privacy, and data security are 
paramount. Especially, in enterprise settings like we have in Selco. 

OpenAI and ChatGPT 
• Free ChatGPT/Plus with history on: Conversations are stored indefinitely (for your 

account’s history) and may be used for model training/improvement. 
• ChatGPT with history oG: Conversations not used for training and deleted from 

OpenAI systems after ~30 days. 
• ChatGPT Enterprise/Business or API usage: Data not used for training at all. API 

data may be retained briefly for abuse monitoring but then deleted. Enterprise 
allows org-level control and auditing of conversations (admins can see logs) but 
those logs are isolated to your org. 

• User ownership: OpenAI’s terms say you own the content you input and output 
(they don’t claim IP on your prompts or the answers), but you should still avoid 
inputting anything confidential unless you trust the service’s privacy measures. 

Watsonx and Enterprise AI 
IBM’s approach is to put privacy first by design. According to IBM’s documentation and 
experts, “IBM does not use the content that you upload to watsonx or the output generated 
by a foundation model to train or improve any IBM-developed model.” All your prompts, 
data, and outputs remain your own. In fact, IBM states it cannot even access your 
prompts or model outputs unless you explicitly save them or choose to share them. 



When you use Watsonx.ai, all your assets (prompts, fine-tuned models, notebooks, etc.) 
are stored in a dedicated cloud storage bucket that is single-tenant and encrypted. IBM 
provides the service and infrastructure, but your data is isolated within your account’s 
resources. 

Notably, IBM’s policies indicate that they do not log prompt submissions or store 
unsaved prompts beyond your session. If you run a prompt in the playground and don’t 
save it, it’s not kept. They do track usage metrics (for billing, performance) but this does not 
include the content of your prompts. No prompt or output is ever used to retrain IBM’s 
foundation models without your permission. In other words, you won’t suddenly find your 
proprietary sentence appearing in some future IBM model’s knowledge. 

For Watsonx Assistant (Conversational AI) specifically, IBM gives you tools to comply 
with privacy needs: you can mask variables (so sensitive info like names or IDs appear as 
***** in any logs), you can control data retention as mentioned, and you can completely 
disable storing conversation logs if required. If you integrate Watsonx Assistant on your 
website, you might choose to keep transcripts for analytics or purge them immediately – it’s 
up to you as the owner. IBM isn’t snooping on those chats behind the scenes. 

This diUerence in philosophy is crucial for enterprise adoption. Many companies are 
uneasy using ChatGPT directly with internal data because of the possibility (however small) 
that the data could leak or be seen by AI trainers. IBM’s Watsonx is marketed as a solution 
to that: an AI platform “built for business” where you have full control, privacy, and data 
isolation. Indeed, an IBM blog emphasizes: “Your data stays private — from input to 
inference to storage. IBM respects data boundaries and does not reuse any of your AI 
content.”. 

Summary of Best Privacy Practices 
• Use platforms or services that clearly do not use your data for anything beyond 

serving you. IBM Watsonx.ai is one, Azure OpenAI is another (Azure explicitly states 
your data is only yours and not used to improve the base model). 

• Implement data retention policies: don’t keep conversation logs longer than 
needed. IBM’s default of 30 days can be a good practice, or even shorter for highly 
sensitive chats. 

• Mask or encrypt sensitive fields. For instance, if a user provides a social security 
number that you need to remember within the conversation, store it in a secure 
variable and mask it in any logs or outputs. 

• Provide a mechanism for users to request deletion of their data (and honor it by 
wiping their memory records from your storage). 

http://watsonx.ai/
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• Avoid fine-tuning the model with raw user chat logs unless necessary – and if you 
do, scrub them first. Often, a RAG approach can achieve the needed specialization 
without risking hard-coding private info into the model. 

• Keep the human in the loop for oversight when an AI is using memory to make sure 
it’s not inadvertently exposing something it shouldn’t. For example, when retrieving 
past info, ensure the info truly belongs to that user and is appropriate to include. 

Conclusion 
LLMs “remember” user-provided information primarily through context windows and 
clever system design, rather than by internal weight updates. In a single conversation, 
models like ChatGPT can appear to recall everything you’ve said – but under the hood, it’s 
because that conversation text is being fed back into the model each time (until it hits a 
limit). There is no magical long-term memory inside the vanilla model: if you wipe the 
context, the model forgets instantly. 

To extend memory, developers use external storage and retrieval (long-term memory via 
databases, vector stores, etc.) or rely on ever-larger context windows. IBM’s Watsonx 
platform exemplifies the state-of-the-art in this regard, giving tools for short-term memory 
(session context, rolling buUers) and long-term memory (knowledge bases, semantic 
caching) within a controllable, secure framework. Techniques like Agentic RAG enable AI 
agents to accumulate knowledge over multiple interactions while still grounding 
themselves in up-to-date information. 

Crucially, the question of how long an AI remembers is not measured in clock time but in 
tokens and design choices. ChatGPT could “remember” a conversation from a year ago if 
that conversation is provided again in the prompt today. Conversely, it could forget what 
you said 2 minutes ago if the context window overflowed or the session was reset. IBM 
Watsonx allows configurable retention – for example, automatically purging chat records 
after 30 days for compliance – ensuring that any long-term memory is explicitly managed 
and not indefinite. 

For a consulting firm building AI solutions like Selco, these insights mean you should 
carefully architect your AI’s memory: 

• Decide what the AI truly needs to remember to serve the user and for how long. 
• Use retrieval mechanisms to supply that memory on demand rather than enlarging 

the base model (which keeps the model general and reduces risk of leakage). 
• Implement controls for forgetting, both for user requests and for routine cleanup. 



• And choose partners or platforms (like Watsonx or a self-hosted model) that align 
with your privacy requirements, so you can confidently tell your clients that their 
data won’t be siphoned away or used without consent. 

In essence, current LLMs are powerful text predictors with no innate long-term memory – 
but with thoughtful system design, we can impart them a memory: one that we program 
and govern. This gives us the best of both worlds: AI that remembers what we want it to, for 
as long as we want, and forgets the rest. By leveraging techniques like context 
management, RAG, and IBM’s agent frameworks, and by upholding strict privacy practices, 
we can build AI solutions that are both intelligent and trustworthy with user data. 
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