
Machine Learning Methods for Retail 
Introduction 

This research investigates how to forecast next-season demand at the Stock-Keeping Unit 
(SKU)–size–store level while explicitly correcting for Out-of-Stock (OOS) censoring (i.e., 
sales = min(true demand, stock)). Traditional models misread OOS periods as low demand 
and distort the size curve (e.g., “XS doesn’t sell” simply because it wasn’t available). Our 
dataset is small, so methods must generalize with limited history, share information 
across related items/stores, and run quickly on a local machine. 

Aim 

Identify, compare, and select a bias-aware, small-data-friendly forecasting approach that 
delivers accurate, app-ready size-by-SKU-by-store predictions. We will evaluate 
candidate models, prioritize accuracy, and recommend a final model to implement. 

Abbreviations 
OOS: Out-of-Stock 

SKU: Stock-Keeping Unit 

WAPE: Weighted Absolute Percentage Error 

MAPE: Mean Absolute Percentage Error 

RNN: Recurrent Neural Network 

LSTM: Long Short-Term Memory 

GRU: Gated Recurrent Unit 

TFT: Temporal Fusion Transformer 

ETS: Exponential Smoothing (Error/Trend/Seasonal) 

TKF: Tobit Kalman Filter 

TETS: Tobit Exponential Smoothing 

SHAP: SHapley Additive exPlanations 

CV: Cross-Validation 



Potential Machine Learning Models 

Bayesian Hierarchical Models 
Probabilistic approach that models latent true demand per SKU-size-store and treats 
observed sales as censored by stock. A hierarchical (multi-level) structure “shares 
strength” across related items/stores, which is ideal for small datasets. Use a censored 
likelihood so OOS periods don’t drag demand down. (PyMC/Stan can do this directly.) 
Recent applied notes show censored-likelihood Bayesian models reduce bias vs. classical 
methods. 

------------------------------------------------------------------------------------------------------------------ 

Censored Data: Observations truncated by a bound (here: stock). 

Censored Likelihood: Log-likelihood accounts for the probability mass above the stock 
bound (e.g., PyMC pm.Censored). 

Hierarchical Pooling (shrinkage): Partial pooling across SKUs/stores to stabilize small 
series. 

Posterior Intervals: Uncertainty bands for safety stock, etc. 

------------------------------------------------------------------------------------------------------------------ 

Pros Cons 
Handles OOS by construction → big bias 
reduction. Needs modeling e\ort (priors, diagnostics). 

Works well with small data (priors + 
pooling). 

MCMC/VI can be slower (still fine for small 
data on M3). 

Delivers uncertainty for planning.  
 

  



State-Space Models: Tobit Kalman Filter (TKF) & Tobit Exponential 
Smoothing (TETS) 
State-space approach where latent (unobserved) true demand evolves over time and 
observed sales are censored by stock: salesₜ = min(true_demandₜ, stockₜ).  

Tobit Kalman Filter (TKF) = Kalman Filter with a Tobit (censored) observation model.  

Tobit Exponential Smoothing (TETS) = Exponential Smoothing with a Tobit layer, so you 
keep ETS speed/interpretability while fixing out-of-stock (OOS) bias. 

------------------------------------------------------------------------------------------------------------------ 

State-Space Model: Represents level/trend/season as hidden “states”; updated each 
period with the Kalman Filter (KF). 

Tobit Model (Censoring): Observation is truncated at a bound (here, stock), i.e., we only 
observe up to the available inventory. 

Truncated Normal: Likelihood used when observations hit the stock boundary. 

Exponential Smoothing (ETS – Error/Trend/Seasonal): Classical forecasting family; TETS 
adds censoring logic on top. 

Time Aggregation: Combine sub-daily signals to daily/weekly to correctly treat intra-day 
stock outs. 

------------------------------------------------------------------------------------------------------------------ 

Pros Cons 
One-stage OOS correction; materially 
reduces downward bias. 

Limited o\-the-shelf tooling; often needs a 
small custom implementation. 

Lightweight & fast (ETS heritage), great for 
small datasets. 

Requires reliable stock/OOS flags (ideally 
stock-on-hand quantities). 

Interpretable components 
(level/trend/season).  

 

  



Gradient-Boosted Trees (LightGBM / XGBoost) 
Turn forecasting into supervised regression across all Stock-Keeping Unit (SKU)–size–
store series: engineer features (lags, rolling stats, seasonality, product/store metadata, 
promotions/price, in-stock flag, days-in-stock, sell-through) and train a global model 
(one model for all series). Light Gradient Boosting Machine (LightGBM) and Extreme 
Gradient Boosting (XGBoost) are fast, accurate, and easy to ship. 

------------------------------------------------------------------------------------------------------------------ 

Global Model: Single model trained on all series with identifiers and metadata → small 
series benefit via pooling. 

Feature Engineering: Lags, moving averages, seasonal dummies, holiday flags, 
promo/price, inventory features. 

Rolling-Origin Cross-Validation (CV): Time-aware CV for robust evaluation. 

SHAP (SHapley Additive exPlanations): Explains feature contributions for interpretability. 

------------------------------------------------------------------------------------------------------------------ 

Pros Cons 

Strong accuracy vs. complexity; very fast 
training/inference on laptop. 

Does not natively “fix” censoring → best 
when paired with OOS features or two-
stage recovery. 

Handles many covariates; explainable via 
feature importance/SHAP. 

Quality depends on good features (you 
must encode seasonality, promos, etc.). 

Works well with limited data when trained 
globally.  

  



Recurrent Neural Networks (RNNs: LSTM / GRU) 
Sequence models that learn temporal patterns directly from history and covariates. Long 
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) can ingest multiple inputs 
(price, promo, stock mask, weather, etc.). Train globally so short series borrow signal from 
others. 

------------------------------------------------------------------------------------------------------------------ 

Sequence-to-Sequence / Sequence-to-One: Predict full horizon or next step from a 
sliding window. 

Embeddings: Dense vectors for high-cardinality IDs (SKU, store, category). 

Regularization: Dropout, weight decay, early stopping to control overfitting. 

Teacher Forcing: Training trick when predicting multi-step sequences. 

------------------------------------------------------------------------------------------------------------------ 

Pros Cons 
Captures nonlinear and long-range 
dynamics; flexible with many covariates. 

Data-hungry; easy to overfit on small 
datasets. 

Global training shares information across 
series. 

Slower to tune/train than trees; still needs 
OOS handling (mask or two-stage). 

 Less interpretable without extra tooling. 
  



Transformers & Modern Architectures (TFT, TimesNet) 
Temporal Fusion Transformer (TFT) uses attention to blend static and time-varying 
covariates with interpretability hooks. TimesNet models temporal “patches” (2D variation) 
and excels at imputation + forecasting on many series. Both are typically trained as global 
models and pair well with explicit OOS handling or two-stage latent demand recovery. 

------------------------------------------------------------------------------------------------------------------ 

Attention: Learns which time steps and features matter for each forecast. 

Static vs. Time-Varying Covariates: TFT separates item/store attributes (static) from 
evolving drivers (price, promo, stock). 

Positional Encoding / Patching: Lets the model learn periodicity; TimesNet converts time 
to structured 2D patches. 

Quantile Loss: Train for full predictive distributions (P10/P50/P90). 

------------------------------------------------------------------------------------------------------------------ 

Pros Cons 
Highest accuracy ceiling when you have 
many related series and rich covariates. 

More compute and engineering; may be 
overkill for tiny datasets. 

Can natively leverage complex drivers and 
long-range dependencies. 

Still needs stock masks or a recovery stage 
to avoid censoring bias. 

Plays well with latent demand recovery 
for OOS-heavy data. 

Harder to maintain/deploy than trees for 
small teams. 

  



Latent Demand Recovery (Two-Stage Pipeline) 
Fix censoring before forecasting. 

Stage-1 (Imputation): Estimate latent (unobserved) demand during out-of-stock periods 
using rules (baseline mix, in-stock-days scaling, substitution) or a learned imputer (e.g., 
TimesNet, simple Bayesian model). 

Stage-2 (Forecast): Train your forecaster (LightGBM/TFT/ETS) on the recovered demand 
series; assume availability in the future horizon. 

------------------------------------------------------------------------------------------------------------------ 

Out-of-Stock (OOS) Mask: Binary/continuous signal of availability used by the imputer 
and/or forecaster. 

Sell-Through: Sold / (sold + ending inventory); helps spot constrained weeks. 

Weighted Absolute Percentage Error (WAPE) / Mean Absolute Percentage Error 
(MAPE): Accuracy metrics. 

Bias: Systematic over/under-forecast; goal is ~0% after recovery. 

------------------------------------------------------------------------------------------------------------------ 

Pros Cons 
Works with almost any forecaster; large 
bias reduction when OOS is frequent. 

Two artifacts to build/maintain (imputer + 
forecaster). 

Transparent: you can audit Stage-1 
adjustments and explain them. 

Forecast quality depends on imputation 
quality. 

  



Hierarchical Forecasting (Product/Store → Size) 
Forecast at multiple levels (total product, store, size) and reconcile so lower levels add up 
to upper levels (coherence). Useful when sizes have sparse histories: forecast total, then 
allocate to sizes via a learned size curve (e.g., softmax) or a Dirichlet share model; or use 
bottom-up/top-down/middle-out strategies. 

------------------------------------------------------------------------------------------------------------------ 

Coherent Forecasts: Reconciled so child forecasts sum to parents. 

Top-Down / Bottom-Up / Middle-Out: Different reconciliation strategies. 

Dirichlet (Compositional) Modeling: Size shares constrained to the simplex (sum to 1). 

Minimum Trace (MinT) Reconciliation: Statistical method to optimally reconcile 
hierarchies. 

------------------------------------------------------------------------------------------------------------------ 

Pros Cons 
Stabilizes size curves with limited data; 
aligns with retail planning. 

Requires clean hierarchies and a little extra 
plumbing. 

Ensures consistency across reporting 
levels (store → region → total). 

If parent forecasts are biased, allocation 
inherits that bias (pair with OOS 
correction). 

 

  



Sell-Through–Based Baseline (Supportive) 
Simple, explainable control logic to diagnose and partially correct constraints. Use sell-
through and in-stock days to scale observed sales to an unconstrained estimate; 
optionally apply a substitution matrix (e.g., XS demand spills to S/M when XS is OOS). 
Great as a sanity check and as a Stage-1 starting point. 

------------------------------------------------------------------------------------------------------------------ 

In-Stock Days: Number of days the item was available within the period; scale sales by 
7/instock_days for weekly normalization. 

Lost Sales: max(0, expected – actual) during constrained periods. 

Substitution Matrix: Probabilities of demand shifting across sizes when a size is OOS. 

------------------------------------------------------------------------------------------------------------------ 

Pros Cons 
Excel-friendly and transparent; easy to 
explain to stakeholders. Heuristic; not optimal on its own. 

Good baseline for latent demand 
recovery before ML. 

Needs careful caps/guards to avoid over-
uplifting. 

  



ARIMA / SARIMA (Classical Time Series) 
Autoregressive Integrated Moving Average (ARIMA) models capture autocorrelation and 
trends; Seasonal ARIMA (SARIMA) adds seasonal terms. Train one series per SKU-size-
store or use external regressors. Works best when histories are moderately long and 
relatively clean (few structural breaks). 

------------------------------------------------------------------------------------------------------------------ 

AR / I / MA: Autoregressive, di\erencing (Integrated), moving average components. 

SARIMA: Seasonal ARIMA with seasonal AR/MA and seasonal di\erencing. 

SARIMAX: SARIMA with eXogenous regressors (price, promo, events). 

Stationarity: After di\erencing, mean/variance stable over time. 

------------------------------------------------------------------------------------------------------------------ 

Pros Cons 

Strong baseline; interpretable and fast. One-series-per-model scales poorly; weak 
for very short histories. 

With SARIMAX, can include covariates 
(promo/price/holiday). 

Does not handle censoring; must pair 
with OOS recovery or masks. 

 Limited capacity vs. ML/deep models for 
complex nonlinear e\ects. 

  



Random Forest Regressor (Tree-Based, Bagging) 
Decision-tree ensemble via bagging (bootstrap aggregation). Similar setup to Gradient-
Boosted Trees (features + global model), but averages many trees instead of boosting. 
Often more robust but less sharp than boosting on tabular forecasting tasks. 

------------------------------------------------------------------------------------------------------------------ 

Bagging: Train trees on bootstrapped samples; average predictions. 

Out-of-Bag (OOB) Error: Built-in validation using samples not seen by a tree. 

Feature Importance: Frequency/impact of feature splits across trees. 

------------------------------------------------------------------------------------------------------------------ 

Pros Cons 

Robust, low-tuning, quick to try; decent 
accuracy with minimal fuss. 

Typically underperforms 
LightGBM/XGBoost on tabular 
forecasting. 

Works with small datasets; interpretable 
via feature importance. 

Still needs OOS features or two-stage 
recovery to avoid censoring bias. 

  



Comparison of Models in Use-Cases 
Models OOS 

Correction 
Quality 

Small-Data 
Robustness 

Accuracy 
Ceiling 

Speed 
and 
Footprint 

Implementation 
Complexity 

Interpretability 

Tobit Kalman 
Filter (TKF) / Tobit 
Exponential 
Smoothing (TETS) 

High (built-in 
censoring) High Medium-

High High (fast) Medium (light 
custom mode) 

High 
(level/trend/sea
son) 

Bayesian 
Hierarchical 
(censored 
likelihood) 

High (by 
construction) 

High (pooling 
+ priors) High 

Medium 
(ok for 
small 
data) 

High (modeling 
e\ort) 

Medium-High 
(probabilistic) 

Two-Stage: 
Latent Demand 
Recovery → Light 
Gradient 
Boosting Machine 
(LightGBM) 

High (via 
Stage-1) 

High (global 
model) High Very High 

(fast) 
Medium (two 
artifacts) 

Medium-High 
(feature 
importances/S
HAP) 

Two-Stage: 
Latent Demand 
Recovery → 
Temporal Fusion 
Transformer (TFT) 

High (via 
Stage-1) 

Medium 
(Needs 
breadth) 

Very High Medium 
(heavier) High Medium (some 

interpretability) 

Long Short-Term 
Memory (LSTM) / 
Gated Recurrent 
Unit (GRU) 

Medium 
(needs 
masks/two-
stage) 

Medium-Low 
(overfit risk) 

High (with 
data) Medium Medium-High Low-Medium 

Autoregressive 
Integrated 
Moving Average 
(ARIMA) / 
Seasonal ARIMA 
(SARIMA) 

Low (no 
censoring) Medium Medium High Low-Medium Medium-High 

Random Forest 
(bagging) 

Medium 
(needs 
masks/two-
stage) 

Medium-High Medium High Low Medium 

 

  



Conclusion 

Recommendation 
If our priorities are top predictive accuracy, small-data robustness, and explicit Out-of-
Stock (OOS) handling, the Bayesian Hierarchical Model (BHM) with a censored 
likelihood is the primary choice. It (1) models latent true demand directly, (2) shares 
strength across Stock-Keeping Unit (SKU), size, and store via partial pooling (critical when 
histories are short), and (3) treats sales = min(true demand, stock) natively through a 
censored likelihood. This combination typically yields lower bias and better calibration on 
limited data. 

At the same time, Tobit Exponential Smoothing (TETS) and Tobit Kalman Filter (TKF) 
remain excellent one-stage baselines: fast, interpretable, and purpose-built for 
censoring. If you need very low engineering overhead and high speed with good 
accuracy, TETS/TKF is a strong practical alternative. 

------------------------------------------------------------------------------------------------------------------ 

Choose Bayesian (censored hierarchical) when accuracy and small-data stability are 
paramount, and you can a\ord modest modeling e\ort. 

Choose Tobit (TETS/TKF) when you want a lean, fast, interpretable solution that still 
corrects OOS in one shot. 

Ideally, run both: ship Tobit as a transparent baseline, and adopt Bayesian as the accuracy-
focused production model. 

Potential Categorizing Feature Using Hierarchical Structure of the Models 
Both shortlisted paths—Bayesian Hierarchical (censored) and Tobit (TETS/TKF) —
naturally support a hierarchical structure across store → region → chain and year → season 
→ week. That means the model can interpret and forecast by sections of the timeline 
(e.g., early/peak/late season, SS vs FW, specific years) while correcting for Out-of-Stock 
(OOS) bias. 

Bayesian (censored, multi-level) 
Uses random ebects for store/season/year with partial pooling, so small or new 
segments borrow signal from the whole while keeping their own nuances. You get per-
segment size curves, time-slice ebects (e.g., early vs late season), and credible 
intervals for each slice—great for scenario planning and buyer storytelling. 



Tobit State-Space (TETS/TKF) 
Encodes level/trend/season as states and can share seasonal templates hierarchically 
across regions or store types. It cleanly separates timeline sections (e.g., seasonal indices 
by phase) and remains OOS-aware via the Tobit observation, delivering fast, interpretable 
per-group forecasts. 

Acting as a Selling Point 
By exploiting a hierarchical structure, both the Bayesian (censored, multi-level) and Tobit 
state-space models learn stable group e\ects across store/region/chain and 
year/season/week, plus time-slice patterns (early/peak/late season). The Potential 
Categorizing Feature Using Hierarchical Structure turns those learned e\ects into 
automatic, explainable cohorts (e.g., store-season segments) that get tailored size curves 
and allocations from day one—enabling credible cold-start forecasts, timeline-aware 
actions, and fewer stockouts/overstocks. Because categories and e\ects are explicit and 
auditable, planners gain trust, re-plans stay fast in a single global pipeline, and the 
capability becomes a clear commercial di\erentiator. 

  



Sources 
1. Pedregal, D. J.; Trapero, J. R.; Holgado, E. “Demand forecasting under lost-sales 

stock policies.” (ScienceDirect / International Journal of Forecasting). 
https://www.sciencedirect.com/science/article/abs/pii/S0169207023000961   

2. PyMC Labs Blog. “Probabilistic Forecasting with Censored Likelihoods.” 
https://www.pymc-labs.com/blog-posts/probabilistic-forecasting   

3. Wang, Y. et al. (2025). “FreshRetailNet-50K: A Stockout-Annotated Censored 
Demand Dataset for Latent Demand Recovery and Forecasting in Fresh Retail.” 
(arXiv). Paper: https://arxiv.org/abs/2505.16319 PDF: 
https://arxiv.org/pdf/2505.16319   

4. FreshRetailNet-50K Baseline Code (latent demand recovery → forecasting). 
https://github.com/Dingdong-Inc/frn-50k-baseline   

5. Bhutani, K. “Evaluating Time Series Models for Real-World Forecasting: A Practical 
Comparison.” (Medium). https://medium.com/%40karanbhutani477/evaluating-
time-series-models-for-real-world-forecasting-a-practical-comparison-
5c9622618715   

6. Marree, R. (AH Tech Blog, 2024). “Accounting for Stock-Out Substitution in Demand 
Forecasting at Scale.” https://blog.ah.technology/accounting-for-stock-out-
substitution-in-demand-forecasting-at-scale-88d264102ee4   

7. Nixtla — Nixtlaverse Documentation (for fast experimentation): MLForecast 
(machine-learning TS): https://nixtlaverse.nixtla.io/mlforecast StatsForecast 
(ARIMA/ETS, etc.): https://nixtlaverse.nixtla.io/statsforecast   

  

https://arxiv.org/abs/2505.16319
https://nixtlaverse.nixtla.io/mlforecast

