
Machine Learning Methods for Retail
Introduction

This research investigates how to forecast next-season demand at the Stock-Keeping Unit
(SKU)–size–store level while explicitly correcting for Out-of-Stock (OOS) censoring (i.e.,
sales = min(true demand, stock)). Traditional models misread OOS periods as low demand
and distort the size curve (e.g., “XS doesn’t sell” simply because it wasn’t available). Our
dataset is small, so methods must generalize with limited history, share information
across related items/stores, and run quickly on a local machine.

Aim

Identify, compare, and select a bias-aware, small-data-friendly forecasting approach that
delivers accurate, app-ready size-by-SKU-by-store predictions. We will evaluate
candidate models, prioritize accuracy, and recommend a final model to implement.

Abbreviations
OOS: Out-of-Stock

SKU: Stock-Keeping Unit

WAPE: Weighted Absolute Percentage Error

MAPE: Mean Absolute Percentage Error

RNN: Recurrent Neural Network

LSTM: Long Short-Term Memory

GRU: Gated Recurrent Unit

TFT: Temporal Fusion Transformer

ETS: Exponential Smoothing (Error/Trend/Seasonal)

TKF: Tobit Kalman Filter

TETS: Tobit Exponential Smoothing

SHAP: SHapley Additive exPlanations

CV: Cross-Validation

Potential Machine Learning Models

Bayesian Hierarchical Models
Probabilistic approach that models latent true demand per SKU-size-store and treats
observed sales as censored by stock. A hierarchical (multi-level) structure “shares
strength” across related items/stores, which is ideal for small datasets. Use a censored
likelihood so OOS periods don’t drag demand down. (PyMC/Stan can do this directly.)
Recent applied notes show censored-likelihood Bayesian models reduce bias vs. classical
methods.

--

Censored Data: Observations truncated by a bound (here: stock).

Censored Likelihood: Log-likelihood accounts for the probability mass above the stock
bound (e.g., PyMC pm.Censored).

Hierarchical Pooling (shrinkage): Partial pooling across SKUs/stores to stabilize small
series.

Posterior Intervals: Uncertainty bands for safety stock, etc.

--

Pros Cons
Handles OOS by construction → big bias
reduction. Needs modeling e\ort (priors, diagnostics).

Works well with small data (priors +
pooling).

MCMC/VI can be slower (still fine for small
data on M3).

Delivers uncertainty for planning.

State-Space Models: Tobit Kalman Filter (TKF) & Tobit Exponential
Smoothing (TETS)
State-space approach where latent (unobserved) true demand evolves over time and
observed sales are censored by stock: salesₜ = min(true_demandₜ, stockₜ).

Tobit Kalman Filter (TKF) = Kalman Filter with a Tobit (censored) observation model.

Tobit Exponential Smoothing (TETS) = Exponential Smoothing with a Tobit layer, so you
keep ETS speed/interpretability while fixing out-of-stock (OOS) bias.

--

State-Space Model: Represents level/trend/season as hidden “states”; updated each
period with the Kalman Filter (KF).

Tobit Model (Censoring): Observation is truncated at a bound (here, stock), i.e., we only
observe up to the available inventory.

Truncated Normal: Likelihood used when observations hit the stock boundary.

Exponential Smoothing (ETS – Error/Trend/Seasonal): Classical forecasting family; TETS
adds censoring logic on top.

Time Aggregation: Combine sub-daily signals to daily/weekly to correctly treat intra-day
stock outs.

--

Pros Cons
One-stage OOS correction; materially
reduces downward bias.

Limited o\-the-shelf tooling; often needs a
small custom implementation.

Lightweight & fast (ETS heritage), great for
small datasets.

Requires reliable stock/OOS flags (ideally
stock-on-hand quantities).

Interpretable components
(level/trend/season).

Gradient-Boosted Trees (LightGBM / XGBoost)
Turn forecasting into supervised regression across all Stock-Keeping Unit (SKU)–size–
store series: engineer features (lags, rolling stats, seasonality, product/store metadata,
promotions/price, in-stock flag, days-in-stock, sell-through) and train a global model
(one model for all series). Light Gradient Boosting Machine (LightGBM) and Extreme
Gradient Boosting (XGBoost) are fast, accurate, and easy to ship.

--

Global Model: Single model trained on all series with identifiers and metadata → small
series benefit via pooling.

Feature Engineering: Lags, moving averages, seasonal dummies, holiday flags,
promo/price, inventory features.

Rolling-Origin Cross-Validation (CV): Time-aware CV for robust evaluation.

SHAP (SHapley Additive exPlanations): Explains feature contributions for interpretability.

--

Pros Cons

Strong accuracy vs. complexity; very fast
training/inference on laptop.

Does not natively “fix” censoring → best
when paired with OOS features or two-
stage recovery.

Handles many covariates; explainable via
feature importance/SHAP.

Quality depends on good features (you
must encode seasonality, promos, etc.).

Works well with limited data when trained
globally.

Recurrent Neural Networks (RNNs: LSTM / GRU)
Sequence models that learn temporal patterns directly from history and covariates. Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) can ingest multiple inputs
(price, promo, stock mask, weather, etc.). Train globally so short series borrow signal from
others.

--

Sequence-to-Sequence / Sequence-to-One: Predict full horizon or next step from a
sliding window.

Embeddings: Dense vectors for high-cardinality IDs (SKU, store, category).

Regularization: Dropout, weight decay, early stopping to control overfitting.

Teacher Forcing: Training trick when predicting multi-step sequences.

--

Pros Cons
Captures nonlinear and long-range
dynamics; flexible with many covariates.

Data-hungry; easy to overfit on small
datasets.

Global training shares information across
series.

Slower to tune/train than trees; still needs
OOS handling (mask or two-stage).

 Less interpretable without extra tooling.

Transformers & Modern Architectures (TFT, TimesNet)
Temporal Fusion Transformer (TFT) uses attention to blend static and time-varying
covariates with interpretability hooks. TimesNet models temporal “patches” (2D variation)
and excels at imputation + forecasting on many series. Both are typically trained as global
models and pair well with explicit OOS handling or two-stage latent demand recovery.

--

Attention: Learns which time steps and features matter for each forecast.

Static vs. Time-Varying Covariates: TFT separates item/store attributes (static) from
evolving drivers (price, promo, stock).

Positional Encoding / Patching: Lets the model learn periodicity; TimesNet converts time
to structured 2D patches.

Quantile Loss: Train for full predictive distributions (P10/P50/P90).

--

Pros Cons
Highest accuracy ceiling when you have
many related series and rich covariates.

More compute and engineering; may be
overkill for tiny datasets.

Can natively leverage complex drivers and
long-range dependencies.

Still needs stock masks or a recovery stage
to avoid censoring bias.

Plays well with latent demand recovery
for OOS-heavy data.

Harder to maintain/deploy than trees for
small teams.

Latent Demand Recovery (Two-Stage Pipeline)
Fix censoring before forecasting.

Stage-1 (Imputation): Estimate latent (unobserved) demand during out-of-stock periods
using rules (baseline mix, in-stock-days scaling, substitution) or a learned imputer (e.g.,
TimesNet, simple Bayesian model).

Stage-2 (Forecast): Train your forecaster (LightGBM/TFT/ETS) on the recovered demand
series; assume availability in the future horizon.

--

Out-of-Stock (OOS) Mask: Binary/continuous signal of availability used by the imputer
and/or forecaster.

Sell-Through: Sold / (sold + ending inventory); helps spot constrained weeks.

Weighted Absolute Percentage Error (WAPE) / Mean Absolute Percentage Error
(MAPE): Accuracy metrics.

Bias: Systematic over/under-forecast; goal is ~0% after recovery.

--

Pros Cons
Works with almost any forecaster; large
bias reduction when OOS is frequent.

Two artifacts to build/maintain (imputer +
forecaster).

Transparent: you can audit Stage-1
adjustments and explain them.

Forecast quality depends on imputation
quality.

Hierarchical Forecasting (Product/Store → Size)
Forecast at multiple levels (total product, store, size) and reconcile so lower levels add up
to upper levels (coherence). Useful when sizes have sparse histories: forecast total, then
allocate to sizes via a learned size curve (e.g., softmax) or a Dirichlet share model; or use
bottom-up/top-down/middle-out strategies.

--

Coherent Forecasts: Reconciled so child forecasts sum to parents.

Top-Down / Bottom-Up / Middle-Out: Different reconciliation strategies.

Dirichlet (Compositional) Modeling: Size shares constrained to the simplex (sum to 1).

Minimum Trace (MinT) Reconciliation: Statistical method to optimally reconcile
hierarchies.

--

Pros Cons
Stabilizes size curves with limited data;
aligns with retail planning.

Requires clean hierarchies and a little extra
plumbing.

Ensures consistency across reporting
levels (store → region → total).

If parent forecasts are biased, allocation
inherits that bias (pair with OOS
correction).

Sell-Through–Based Baseline (Supportive)
Simple, explainable control logic to diagnose and partially correct constraints. Use sell-
through and in-stock days to scale observed sales to an unconstrained estimate;
optionally apply a substitution matrix (e.g., XS demand spills to S/M when XS is OOS).
Great as a sanity check and as a Stage-1 starting point.

--

In-Stock Days: Number of days the item was available within the period; scale sales by
7/instock_days for weekly normalization.

Lost Sales: max(0, expected – actual) during constrained periods.

Substitution Matrix: Probabilities of demand shifting across sizes when a size is OOS.

--

Pros Cons
Excel-friendly and transparent; easy to
explain to stakeholders. Heuristic; not optimal on its own.

Good baseline for latent demand
recovery before ML.

Needs careful caps/guards to avoid over-
uplifting.

ARIMA / SARIMA (Classical Time Series)
Autoregressive Integrated Moving Average (ARIMA) models capture autocorrelation and
trends; Seasonal ARIMA (SARIMA) adds seasonal terms. Train one series per SKU-size-
store or use external regressors. Works best when histories are moderately long and
relatively clean (few structural breaks).

--

AR / I / MA: Autoregressive, di\erencing (Integrated), moving average components.

SARIMA: Seasonal ARIMA with seasonal AR/MA and seasonal di\erencing.

SARIMAX: SARIMA with eXogenous regressors (price, promo, events).

Stationarity: After di\erencing, mean/variance stable over time.

--

Pros Cons

Strong baseline; interpretable and fast. One-series-per-model scales poorly; weak
for very short histories.

With SARIMAX, can include covariates
(promo/price/holiday).

Does not handle censoring; must pair
with OOS recovery or masks.

 Limited capacity vs. ML/deep models for
complex nonlinear e\ects.

Random Forest Regressor (Tree-Based, Bagging)
Decision-tree ensemble via bagging (bootstrap aggregation). Similar setup to Gradient-
Boosted Trees (features + global model), but averages many trees instead of boosting.
Often more robust but less sharp than boosting on tabular forecasting tasks.

--

Bagging: Train trees on bootstrapped samples; average predictions.

Out-of-Bag (OOB) Error: Built-in validation using samples not seen by a tree.

Feature Importance: Frequency/impact of feature splits across trees.

--

Pros Cons

Robust, low-tuning, quick to try; decent
accuracy with minimal fuss.

Typically underperforms
LightGBM/XGBoost on tabular
forecasting.

Works with small datasets; interpretable
via feature importance.

Still needs OOS features or two-stage
recovery to avoid censoring bias.

Comparison of Models in Use-Cases
Models OOS

Correction
Quality

Small-Data
Robustness

Accuracy
Ceiling

Speed
and
Footprint

Implementation
Complexity

Interpretability

Tobit Kalman
Filter (TKF) / Tobit
Exponential
Smoothing (TETS)

High (built-in
censoring) High Medium-

High High (fast) Medium (light
custom mode)

High
(level/trend/sea
son)

Bayesian
Hierarchical
(censored
likelihood)

High (by
construction)

High (pooling
+ priors) High

Medium
(ok for
small
data)

High (modeling
e\ort)

Medium-High
(probabilistic)

Two-Stage:
Latent Demand
Recovery → Light
Gradient
Boosting Machine
(LightGBM)

High (via
Stage-1)

High (global
model) High Very High

(fast)
Medium (two
artifacts)

Medium-High
(feature
importances/S
HAP)

Two-Stage:
Latent Demand
Recovery →
Temporal Fusion
Transformer (TFT)

High (via
Stage-1)

Medium
(Needs
breadth)

Very High Medium
(heavier) High Medium (some

interpretability)

Long Short-Term
Memory (LSTM) /
Gated Recurrent
Unit (GRU)

Medium
(needs
masks/two-
stage)

Medium-Low
(overfit risk)

High (with
data) Medium Medium-High Low-Medium

Autoregressive
Integrated
Moving Average
(ARIMA) /
Seasonal ARIMA
(SARIMA)

Low (no
censoring) Medium Medium High Low-Medium Medium-High

Random Forest
(bagging)

Medium
(needs
masks/two-
stage)

Medium-High Medium High Low Medium

Conclusion

Recommendation
If our priorities are top predictive accuracy, small-data robustness, and explicit Out-of-
Stock (OOS) handling, the Bayesian Hierarchical Model (BHM) with a censored
likelihood is the primary choice. It (1) models latent true demand directly, (2) shares
strength across Stock-Keeping Unit (SKU), size, and store via partial pooling (critical when
histories are short), and (3) treats sales = min(true demand, stock) natively through a
censored likelihood. This combination typically yields lower bias and better calibration on
limited data.

At the same time, Tobit Exponential Smoothing (TETS) and Tobit Kalman Filter (TKF)
remain excellent one-stage baselines: fast, interpretable, and purpose-built for
censoring. If you need very low engineering overhead and high speed with good
accuracy, TETS/TKF is a strong practical alternative.

--

Choose Bayesian (censored hierarchical) when accuracy and small-data stability are
paramount, and you can a\ord modest modeling e\ort.

Choose Tobit (TETS/TKF) when you want a lean, fast, interpretable solution that still
corrects OOS in one shot.

Ideally, run both: ship Tobit as a transparent baseline, and adopt Bayesian as the accuracy-
focused production model.

Potential Categorizing Feature Using Hierarchical Structure of the Models
Both shortlisted paths—Bayesian Hierarchical (censored) and Tobit (TETS/TKF) —
naturally support a hierarchical structure across store → region → chain and year → season
→ week. That means the model can interpret and forecast by sections of the timeline
(e.g., early/peak/late season, SS vs FW, specific years) while correcting for Out-of-Stock
(OOS) bias.

Bayesian (censored, multi-level)
Uses random ebects for store/season/year with partial pooling, so small or new
segments borrow signal from the whole while keeping their own nuances. You get per-
segment size curves, time-slice ebects (e.g., early vs late season), and credible
intervals for each slice—great for scenario planning and buyer storytelling.

Tobit State-Space (TETS/TKF)
Encodes level/trend/season as states and can share seasonal templates hierarchically
across regions or store types. It cleanly separates timeline sections (e.g., seasonal indices
by phase) and remains OOS-aware via the Tobit observation, delivering fast, interpretable
per-group forecasts.

Acting as a Selling Point
By exploiting a hierarchical structure, both the Bayesian (censored, multi-level) and Tobit
state-space models learn stable group e\ects across store/region/chain and
year/season/week, plus time-slice patterns (early/peak/late season). The Potential
Categorizing Feature Using Hierarchical Structure turns those learned e\ects into
automatic, explainable cohorts (e.g., store-season segments) that get tailored size curves
and allocations from day one—enabling credible cold-start forecasts, timeline-aware
actions, and fewer stockouts/overstocks. Because categories and e\ects are explicit and
auditable, planners gain trust, re-plans stay fast in a single global pipeline, and the
capability becomes a clear commercial di\erentiator.

Sources
1. Pedregal, D. J.; Trapero, J. R.; Holgado, E. “Demand forecasting under lost-sales

stock policies.” (ScienceDirect / International Journal of Forecasting).
https://www.sciencedirect.com/science/article/abs/pii/S0169207023000961

2. PyMC Labs Blog. “Probabilistic Forecasting with Censored Likelihoods.”
https://www.pymc-labs.com/blog-posts/probabilistic-forecasting

3. Wang, Y. et al. (2025). “FreshRetailNet-50K: A Stockout-Annotated Censored
Demand Dataset for Latent Demand Recovery and Forecasting in Fresh Retail.”
(arXiv). Paper: https://arxiv.org/abs/2505.16319 PDF:
https://arxiv.org/pdf/2505.16319

4. FreshRetailNet-50K Baseline Code (latent demand recovery → forecasting).
https://github.com/Dingdong-Inc/frn-50k-baseline

5. Bhutani, K. “Evaluating Time Series Models for Real-World Forecasting: A Practical
Comparison.” (Medium). https://medium.com/%40karanbhutani477/evaluating-
time-series-models-for-real-world-forecasting-a-practical-comparison-
5c9622618715

6. Marree, R. (AH Tech Blog, 2024). “Accounting for Stock-Out Substitution in Demand
Forecasting at Scale.” https://blog.ah.technology/accounting-for-stock-out-
substitution-in-demand-forecasting-at-scale-88d264102ee4

7. Nixtla — Nixtlaverse Documentation (for fast experimentation): MLForecast
(machine-learning TS): https://nixtlaverse.nixtla.io/mlforecast StatsForecast
(ARIMA/ETS, etc.): https://nixtlaverse.nixtla.io/statsforecast

https://arxiv.org/abs/2505.16319
https://nixtlaverse.nixtla.io/mlforecast

