Machine Learning Methods for Retail

Introduction

This research investigates how to forecast next-season demand at the Stock-Keeping Unit
(SKU)-size-store level while explicitly correcting for Out-of-Stock (OOS) censoring (i.e.,
sales = min(true demand, stock)). Traditional models misread OOS periods as low demand
and distort the size curve (e.g., “XS doesn’t sell” simply because it wasn’t available). Our
datasetis small, so methods must generalize with limited history, share information
across related items/stores, and run quickly on a local machine.

Aim

Identify, compare, and select a bias-aware, small-data-friendly forecasting approach that
delivers accurate, app-ready size-by-SKU-by-store predictions. We will evaluate
candidate models, prioritize accuracy, and recommend a final model to implement.

Abbreviations
00S: Out-of-Stock

SKU: Stock-Keeping Unit

WAPE: Weighted Absolute Percentage Error
MAPE: Mean Absolute Percentage Error
RNN: Recurrent Neural Network

LSTM: Long Short-Term Memory

GRU: Gated Recurrent Unit

TFT: Temporal Fusion Transformer

ETS: Exponential Smoothing (Error/Trend/Seasonal)
TKF: Tobit Kalman Filter

TETS: Tobit Exponential Smoothing

SHAP: SHapley Additive exPlanations

CV: Cross-Validation



Potential Machine Learning Models

Bayesian Hierarchical Models

Probabilistic approach that models latent true demand per SKU-size-store and treats
observed sales as censored by stock. A hierarchical (multi-level) structure “shares
strength” across related items/stores, which is ideal for small datasets. Use a censored
likelihood so OOS periods don’t drag demand down. (PyMC/Stan can do this directly.)
Recent applied notes show censored-likelihood Bayesian models reduce bias vs. classical
methods.

Censored Data: Observations truncated by a bound (here: stock).

Censored Likelihood: Log-likelihood accounts for the probability mass above the stock
bound (e.g., PyMC pm.Censored).

Hierarchical Pooling (shrinkage): Partial pooling across SKUs/stores to stabilize small
series.

Posterior Intervals: Uncertainty bands for safety stock, etc.

Pros cmns ]

Handles OOS by construction - big bias

Needs modeling effort (priors, diagnostics).

reduction.
Works well with small data (priors + MCMC/VI can be slower (still fine for small
pooling). data on M3).

Delivers uncertainty for planning.




State-Space Models: Tobit Kalman Filter (TKF) & Tobit Exponential
Smoothing (TETS)

State-space approach where latent (unobserved) true demand evolves over time and

observed sales are censored by stock: sales; = min(true_demand;, stock;).
Tobit Kalman Filter (TKF) = Kalman Filter with a Tobit (censored) observation model.

Tobit Exponential Smoothing (TETS) = Exponential Smoothing with a Tobit layer, so you
keep ETS speed/interpretability while fixing out-of-stock (OOS) bias.

State-Space Model: Represents level/trend/season as hidden “states”; updated each
period with the Kalman Filter (KF).

Tobit Model (Censoring): Observation is truncated at a bound (here, stock), i.e., we only
observe up to the available inventory.

Truncated Normal: Likelihood used when observations hit the stock boundary.

Exponential Smoothing (ETS — Error/Trend/Seasonal): Classical forecasting family; TETS
adds censoring logic on top.

Time Aggregation: Combine sub-daily signals to daily/weekly to correctly treat intra-day
stock outs.

Pros cns ]

One-stage OOS correction; materially Limited off-the-shelf tooling; often needs a
reduces downward bias. small custom implementation.
Lightweight & fast (ETS heritage), great for | Requires reliable stock/OOS flags (ideally
small datasets. stock-on-hand quantities).

Interpretable components

(level/trend/season).




Gradient-Boosted Trees (LightGBM / XGBoost)

Turn forecasting into supervised regression across all Stock-Keeping Unit (SKU)-size-
store series: engineer features (lags, rolling stats, seasonality, product/store metadata,
promotions/price, in-stock flag, days-in-stock, sell-through) and train a global model
(one model for all series). Light Gradient Boosting Machine (LightGBM) and Extreme
Gradient Boosting (XGBoost) are fast, accurate, and easy to ship.

Global Model: Single model trained on all series with identifiers and metadata > small
series benefit via pooling.

Feature Engineering: Lags, moving averages, seasonal dummies, holiday flags,
promo/price, inventory features.

Rolling-Origin Cross-Validation (CV): Time-aware CV for robust evaluation.

SHAP (SHapley Additive exPlanations): Explains feature contributions for interpretability.

Pros cms ]

Does not natively “fix” censoring > best
when paired with OOS features or two-
stage recovery.

Strong accuracy vs. complexity; very fast
training/inference on laptop.

Handles many covariates; explainable via Quality depends on good features (you
feature importance/SHAP. must encode seasonality, promos, etc.).

Works well with limited data when trained
globally.




Recurrent Neural Networks (RNNs: LSTM / GRU)

Sequence models that learn temporal patterns directly from history and covariates. Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) can ingest multiple inputs
(price, promo, stock mask, weather, etc.). Train globally so short series borrow signal from
others.

Sequence-to-Sequence / Sequence-to-One: Predict full horizon or next step from a
sliding window.

Embeddings: Dense vectors for high-cardinality IDs (SKU, store, category).
Regularization: Dropout, weight decay, early stopping to control overfitting.

Teacher Forcing: Training trick when predicting multi-step sequences.

Pros _
Captures nonlinear and long-range Data-hungry; easy to overfit on small
dynamics; flexible with many covariates. datasets.
Global training shares information across Slower to tune/train than trees; still needs
series. OOS handling (mask or two-stage).

Less interpretable without extra tooling.




Transformers & Modern Architectures (TFT, TimesNet)

Temporal Fusion Transformer (TFT) uses attention to blend static and time-varying
covariates with interpretability hooks. TimesNet models temporal “patches” (2D variation)
and excels at imputation + forecasting on many series. Both are typically trained as global
models and pair well with explicit OOS handling or two-stage latent demand recovery.

Attention: Learns which time steps and features matter for each forecast.

Static vs. Time-Varying Covariates: TFT separates item/store attributes (static) from
evolving drivers (price, promo, stock).

Positional Encoding / Patching: Lets the model learn periodicity; TimesNet converts time
to structured 2D patches.

Quantile Loss: Train for full predictive distributions (P10/P50/P90).

Pros cms ]

Highest accuracy ceiling when you have More compute and engineering; may be
many related series and rich covariates. overkill for tiny datasets.

Can natively leverage complex drivers and | Still needs stock masks or a recovery stage
long-range dependencies. to avoid censoring bias.

Plays well with latent demand recovery Harder to maintain/deploy than trees for
for OOS-heavy data. small teams.




Latent Demand Recovery (Two-Stage Pipeline)

Fix censoring before forecasting.

Stage-1 (Imputation): Estimate latent (unobserved) demand during out-of-stock periods
using rules (baseline mix, in-stock-days scaling, substitution) or a learned imputer (e.g.,
TimesNet, simple Bayesian model).

Stage-2 (Forecast): Train your forecaster (LightGBM/TFT/ETS) on the recovered demand
series; assume availability in the future horizon.

Out-of-Stock (OOS) Mask: Binary/continuous signal of availability used by the imputer
and/or forecaster.

Sell-Through: Sold / (sold + ending inventory); helps spot constrained weeks.

Weighted Absolute Percentage Error (WAPE) / Mean Absolute Percentage Error
(MAPE): Accuracy metrics.

Bias: Systematic over/under-forecast; goal is ~0% after recovery.

Pros cms ]

Works with almost any forecaster; large Two artifacts to build/maintain (imputer +
bias reduction when OOS is frequent. forecaster).

Transparent: you can audit Stage-1 Forecast quality depends on imputation
adjustments and explain them. quality.




Hierarchical Forecasting (Product/Store > Size)

Forecast at multiple levels (total product, store, size) and reconcile so lower levels add up
to upper levels (coherence). Useful when sizes have sparse histories: forecast total, then
allocate to sizes via a learned size curve (e.g., softmax) or a Dirichlet share model; or use
bottom-up/top-down/middle-out strategies.

Coherent Forecasts: Reconciled so child forecasts sum to parents.
Top-Down / Bottom-Up / Middle-Out: Different reconciliation strategies.
Dirichlet (Compositional) Modeling: Size shares constrained to the simplex (sumto 1).

Minimum Trace (MinT) Reconciliation: Statistical method to optimally reconcile
hierarchies.

Pros cnms ]

Stabilizes size curves with limited data; Requires clean hierarchies and a little extra
aligns with retail planning. plumbing.

If parent forecasts are biased, allocation
inherits that bias (pair with OOS
correction).

Ensures consistency across reporting
levels (store > region - total).




Sell-Through—Based Baseline (Supportive)

Simple, explainable control logic to diagnose and partially correct constraints. Use sell-
through and in-stock days to scale observed sales to an unconstrained estimate;
optionally apply a substitution matrix (e.g., XS demand spills to S/M when XS is OO0S).
Great as a sanity check and as a Stage-1 starting point.

In-Stock Days: Number of days the item was available within the period; scale sales by
7/instock_days for weekly normalization.

Lost Sales: max(0, expected — actual) during constrained periods.

Substitution Matrix: Probabilities of demand shifting across sizes when a size is OOS.

Pros cmns ]

Excel-friendly and transparent; easy to
explain to stakeholders.

Heuristic; not optimal on its own.

Good baseline for latent demand Needs careful caps/guards to avoid over-
recovery before ML. uplifting.




ARIMA / SARIMA (Classical Time Series)

Autoregressive Integrated Moving Average (ARIMA) models capture autocorrelation and
trends; Seasonal ARIMA (SARIMA) adds seasonal terms. Train one series per SKU-size-
store or use external regressors. Works best when histories are moderately long and
relatively clean (few structural breaks).

AR/ 1/ MA: Autoregressive, differencing (Integrated), moving average components.
SARIMA: Seasonal ARIMA with seasonal AR/MA and seasonal differencing.
SARIMAX: SARIMA with eXogenous regressors (price, promo, events).

Stationarity: After differencing, mean/variance stable over time.

Pros cms ]

One-series-per-model scales poorly; weak
for very short histories.

Strong baseline; interpretable and fast.

With SARIMAX, can include covariates Does not handle censoring; must pair
(promo/price/holiday). with OOS recovery or masks.

Limited capacity vs. ML/deep models for
complex nonlinear effects.




Random Forest Regressor (Tree-Based, Bagging)

Decision-tree ensemble via bagging (bootstrap aggregation). Similar setup to Gradient-
Boosted Trees (features + global model), but averages many trees instead of boosting.
Often more robust but less sharp than boosting on tabular forecasting tasks.

Bagging: Train trees on bootstrapped samples; average predictions.
Out-of-Bag (OOB) Error: Built-in validation using samples not seen by a tree.

Feature Importance: Frequency/impact of feature splits across trees.

Pros cnms ]

Typically underperforms
LightGBM/XGBoost on tabular
forecasting.

Robust, low-tuning, quick to try; decent
accuracy with minimal fuss.

Works with small datasets; interpretable Still needs OOS features or two-stage
via feature importance. recovery to avoid censoring bias.




Comparison of Models in Use-Cases

Medium
(needs
masks/two-
stage)




Conclusion

Recommendation

If our priorities are top predictive accuracy, small-data robustness, and explicit Out-of-
Stock (OOS) handling, the Bayesian Hierarchical Model (BHM) with a censored
likelihood is the primary choice. It (1) models latent true demand directly, (2) shares
strength across Stock-Keeping Unit (SKU), size, and store via partial pooling (critical when
histories are short), and (3) treats sales = min(true demand, stock) natively through a
censored likelihood. This combination typically yields lower bias and better calibration on
limited data.

At the same time, Tobit Exponential Smoothing (TETS) and Tobit Kalman Filter (TKF)
remain excellent one-stage baselines: fast, interpretable, and purpose-built for
censoring. If you need very low engineering overhead and high speed with good
accuracy, TETS/TKF is a strong practical alternative.

Choose Bayesian (censored hierarchical) when accuracy and small-data stability are
paramount, and you can afford modest modeling effort.

Choose Tobit (TETS/TKF) when you want a lean, fast, interpretable solution that still
corrects OOS in one shot.

Ideally, run both: ship Tobit as a transparent baseline, and adopt Bayesian as the accuracy-
focused production model.

Potential Categorizing Feature Using Hierarchical Structure of the Models

Both shortlisted paths—Bayesian Hierarchical (censored) and Tobit (TETS/TKF) —
naturally support a hierarchical structure across store > region > chain and year > season
> week. That means the model can interpret and forecast by sections of the timeline
(e.g., early/peak/late season, SS vs FW, specific years) while correcting for Out-of-Stock
(O0S) bias.

Bayesian (censored, multi-level)

Uses random effects for store/season/year with partial pooling, so small or new
segments borrow signal from the whole while keeping their own nuances. You get per-
segment size curves, time-slice effects (e.g., early vs late season), and credible
intervals for each slice—great for scenario planning and buyer storytelling.



Tobit State-Space (TETS/TKF)

Encodes level/trend/season as states and can share seasonal templates hierarchically
across regions or store types. It cleanly separates timeline sections (e.g., seasonal indices
by phase) and remains OOS-aware via the Tobit observation, delivering fast, interpretable
per-group forecasts.

Acting as a Selling Point

By exploiting a hierarchical structure, both the Bayesian (censored, multi-level) and Tobit
state-space models learn stable group effects across store/region/chain and
year/season/week, plus time-slice patterns (early/peak/late season). The Potential
Categorizing Feature Using Hierarchical Structure turns those learned effects into
automatic, explainable cohorts (e.g., store-season segments) that get tailored size curves
and allocations from day one—enabling credible cold-start forecasts, timeline-aware
actions, and fewer stockouts/overstocks. Because categories and effects are explicit and
auditable, planners gain trust, re-plans stay fast in a single global pipeline, and the
capability becomes a clear commercial differentiator.



Sources

1.

Pedregal, D. J.; Trapero, J. R.; Holgado, E. “Demand forecasting under lost-sales
stock policies.” (ScienceDirect / International Journal of Forecasting).
https://www.sciencedirect.com/science/article/abs/pii/S0169207023000961
PyMC Labs Blog. “Probabilistic Forecasting with Censored Likelihoods.”
https://www.pymc-labs.com/blog-posts/probabilistic-forecasting

Wang, Y. et al. (2025). “FreshRetailNet-50K: A Stockout-Annotated Censored
Demand Dataset for Latent Demand Recovery and Forecasting in Fresh Retail.”
(arXiv). Paper: https://arxiv.org/abs/2505.16319 PDF:
https://arxiv.org/pdf/2505.16319

FreshRetailNet-50K Baseline Code (latent demand recovery > forecasting).
https://github.com/Dingdong-Inc/frn-50k-baseline

Bhutani, K. “Evaluating Time Series Models for Real-World Forecasting: A Practical

Comparison.” (Medium). https://medium.com/%40karanbhutani477/evaluating-
time-series-models-for-real-world-forecasting-a-practical-comparison-
5c9622618715

Marree, R. (AH Tech Blog, 2024). “Accounting for Stock-Out Substitution in Demand
Forecasting at Scale.” https://blog.ah.technology/accounting-for-stock-out-
substitution-in-demand-forecasting-at-scale-88d264102ee4

Nixtla — Nixtlaverse Documentation (for fast experimentation): MLForecast
(machine-learning TS): https://nixtlaverse.nixtla.io/mlforecast StatsForecast
(ARIMAV/ETS, etc.): https://nixtlaverse.nixtla.io/statsforecast



https://arxiv.org/abs/2505.16319
https://nixtlaverse.nixtla.io/mlforecast

